Rohit Beriwal

Multiprocessing

My implementation:

from multiprocessing import Pool

with Pool() as pool:
  res = pool.imap(func=self.calc_vec, iterable=input_str_list, chunksize=4)
  pool.close()
  pool.join()
  pool.terminate()
  del pool
  for i in res:
    yield i

Multiprocessing using pool:

Using process pool executor:

import concurrent.futures

with oncurrent.futures.ProcessPoolExecutor() as executor:
  res = [executor.submit( function_name, args=[]) for _ in range(10)]
  #
  # no need for below for loop when using map() 
  # or if we would like the result inorder of input, INSTEAD of future objects:
  res = executor.map( function_name , arg_list )
  
  
  for f in concurrent.futures.as_completed(res):
    print(f.result())

Native way:

Note: Arguments passed to a function being executed by multiprocess, MUST BE pickle-able

Serial spawing multiple processes:

Import module for multiprocessing:

import multiprocessing

Creating processes:


p1 = multiprocessing.Process(target= function_name, args=[])

Executing and syncing processes: Note: Join() is reuqired, otherwise it will execute the main script in parallel to these processes

python
p1.start()

p1.join()

Spawning processes in a loop:


prcocess_list = []

for _ in range(10);
  p = multiprocessing.Process(target= function_name, args=[])
  p.start()
  process_list.append(p)
  
for p in process_list:
  p.join()